29 resultados para Exons

em University of Queensland eSpace - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We expressed the full-length CD44v2-10 isoform in SKHep1 cells, a nonmetastatic human hepatocellular carcinoma cell line that does not express any endogenous CD44v isoforms. In SCID mice, expression of CD44v2-10 by SKHep1 cells had no effect on s.c. primary tumor development but caused pulmonary metastases in 41% (7 of 17) of animals compared with control SKHep1 cells (0 of 16; P < 0.01). CD44v2-10 expression by SKHep1 cells resulted in enhanced heparan sulfate (HS) attachment and an enhanced capacity to bind heparin-binding growth factors. Mutation of the v3 domain to prevent HS attachment and growth factor binding abolished the metastatic phenotype, demonstrating that HS modification of CD44v2-10 plays a critical role in the development of metastases in this model. However, in vitro proliferation, motility, and invasion were not altered by CD44v2-10 expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thiol tripeptides, glutathione (GSH) and homoglutathione (hGSH), perform multiple roles in legumes, including protection against toxicity of free radicals and heavy metals. The three genes involved in the synthesis of GSH and hGSH in the model legume, Lotus japonicus, have been fully characterized and appear to be present as single copies in the genome. The gamma-glutamylcysteine synthetase (gammaecs) gene was mapped on the long arm of chromosome 4 (70.0 centimorgans [cM]) and consists of 15 exons, whereas the glutathione synthetase (gshs) and homoglutathione synthetase (hgshs) genes were mapped on the long arm of chromosome 1 (81.3 cM) and found to be arranged in tandem, with a separation of approximately 8 kb. Both genes consist of 12 exons of exactly the same size (except exon 1, which is similar). Two types of transcripts were detected for the gshs gene, which putatively encode proteins localized in the plastids and cytosol. Promoter regions contain cis-acting regulatory elements that may be involved in the plant's response to light, hormones, and stress. Determination of transcript levels, enzyme activities, and thiol contents in nodules, roots, and leaves revealed that gammaecs and hgshs are expressed in all three plant organs, whereas gshs is significantly functional only in nodules. This strongly suggests an important role of GSH in the rhizobia-legume symbiosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sulfate plays an essential role during growth, development, bone/cartilage formation, and cellular metabolism. In this study, we have isolated the human sulfate anion transporter cDNA (hsat-1; SCL26A1) and gene (SAT1), determined its protein function in Xenopus oocytes and characterized SAT1 promoter activity in mammalian renal cell lines. hsat-1 encodes a protein of 75 kDa, with 12 putative transmembrane domains, that induces sulfate, chloride, and oxalate transport in Xenopus oocytes. hsat-1 mRNA is expressed most abundantly in the kidney and liver, with lower levels in the pancreas, testis, brain, small intestine, colon, and lung. The SAT1 gene is comprised of four exons stretching 6 kb in length, with an alternative splice site formed from an optional exon. SAT1 5' flanking region led to promoter activity in renal OK and LLC-PK1 cells. Using SAT1 5' flanking region truncations, the first 135 bp was shown to be sufficient for basal promoter activity. Mutation of the activator protein-1 (AP-1) site at position 252 in the SAT1 promoter led to loss of transcriptional activity, suggesting its requirement for SAT1 basal expression. This study represents the first functional characterization of the human SAT1 gene and protein encoded by the anion transporter hsat-1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sulfate (SO42-) is required for bone/cartilage formation and cellular metabolism. sat-1 is a SO42- anion transporter expressed on basolateral membranes of renal proximal tubules, and is suggested to play an important role in maintaining SO42- homeostasis. As a first step towards studying its tissue-specific expression, hormonal regulation, and in preparation for the generation of knockout mice, we have cloned and characterized the mouse sat-1 cDNA (msat-1), gene (sat1; Slc26a1) and promoter region. msat-1 encodes a 704 amino acid protein (75.4 kDa) with 12 putative transmembrane domains that induce SO42- (also oxalate and chloride) transport in Xenopus oocytes. msat-1 mRNA was expressed in kidney, liver, cecum, calvaria, brain, heart, and skeletal muscle. Two distinct transcripts were expressed in kidney and liver due to alternative utilization of the first intron, corresponding to an internal portion of the 5'-untranslated region. The Sa1 gene (similar to6 kb) consists of 4 exons. Its promoter is similar to52% G+C rich and contains a number of well-characterized cis-acting elements, including sequences resembling hormone responsive elements T3REs and VDREs. We demonstrate that Sat1 promoter driven basal transcription in OK cells was stimulated by tri-iodothyronine. Site-directed mutagenesis identified an imperfect T3RE at -454-bp in the Sat1 promoter to be responsible for this activity. This study represents the first characterization of the structure and regulation of the Sat1 gene encoding a SO42-/chloride/oxalate anion transporter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Classic Hodgkin's lymphoma (HL) tissue contains a small population of morphologically distinct malignant cells called Hodgkin and Reed-Sternberg (HRS) cells, associated with the development of HL. Using 3'-rapid amplification of cDNA ends ( RACE) we identified an alternative mRNA for the DEC-205 multilectin receptor in the HRS cell line L428. Sequence analysis revealed that the mRNA encodes a fusion protein between DEC-205 and a novel C-type lectin DCL-1. Although the 7.5-kb DEC-205 and 4.2-kb DCL-1 mRNA were expressed independently in myeloid and B lymphoid cell lines, the DEC-205/DCL-1 fusion mRNA (9.5 kb) predominated in the HRS cell lines ( L428, KM-H2, and HDLM-2). The DEC-205 and DCL-1 genes comprising 35 and 6 exons, respectively, are juxtaposed on chromosome band 2q24 and separated by only 5.4 kb. We determined the DCL-1 transcription initiation site within the intervening sequence by 5'-RACE, confirming that DCL-1 is an independent gene. Two DEC-205/DCL-1 fusion mRNA variants may result from cotranscription of DEC-205 and DCL-1, followed by splicing DEC-205 exon 35 or 34-35 along with DCL-1 exon 1. The resulting reading frames encode the DEC-205 ectodomain plus the DCL-1 ectodomain, the transmembrane, and the cytoplasmic domain. Using DCL-1 cytoplasmic domain-specific polyclonal and DEC-205 monoclonal antibodies for immunoprecipitation/Western blot analysis, we showed that the fusion mRNA is translated into a DEC-205/DCL-1 fusion protein, expressed in the HRS cell lines. These results imply an unusual transcriptional control mechanism in HRS cells, which cotranscribe an mRNA containing DEC-205 and DCL-1 prior to generating the intergenically spliced mRNA to produce a DEC-205/DCL-1 fusion protein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tartrate-resistant acid phosphatase (TRAP) is highly expressed in osteoclasts and in a subset of tissue macrophages and dendritic cells. It is expressed at lower levels in the parenchymal cells of the liver, glomerular mesangial cells of the kidney and pancreatic acinar cells. We have identified novel TRAP mRNAs that differ in their 5-untranslated region (5'-UTR) sequence, but align with the known murine TRAP mRNA from the first base of Exon 2. The novel 5'-UTRs represent alternative first exons located upstream of the known 5'-UTR. A similar genomic structure exists for the human TRAP gene with partial conservation of the exon and promoter sequences. Expression of the most distal 5'-UTR (Exon 1A) is restricted to adult bone and spleen tissue. Exon 1B is expressed primarily in tissues containing TRAP-positive nonhaematopoietic cells. The known TRAP 5'-UTR (Exon 1) is expressed in tissues characteristic of myeloid cell expression. In addition the Exon 1C promoter sequence is shown to comprise distinct transcription start regions, with an osteoclast-specific transcription initiation site identified downstream of a TATA-like element. Macrophages are shown to initiate transcription of the Exon 1C transcript from a purine-rich region located upstream of the osteoclast-specific transcription start point. The distinct expression patterns for each of the TRAP 5'-UTRs suggest that TRAP mRNA expression is regulated by the use of four alternative tissue- and cell-restricted promoters. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyzed the FANTOM2 clone set of 60,770 RIKEN full-length mouse cDNA sequences and 44,122 public mRNA sequences. We developed a new computational procedure to identify and classify the forms of splice variation evident in this data set and organized the results into a publicly accessible database that can be used for future expression array construction, structural genomics, and analyses of the mechanism and regulation of alternative splicing. Statistical analysis shows that at least 41% and possibly as much as 60% of multiexon genes in mouse have multiple splice forms. Of the transcription units with multiple splice forms, 49% contain transcripts in which the apparent use of an alternative transcription start (stop) is accompanied by alternative splicing of the initial (terminal) exon. This implies that alternative transcription may frequently induce alternative splicing. The fact that 73% of all exons with splice variation fall within the annotated coding region indicates that most splice variation is likely to affect the protein form. Finally, we compared the set of constitutive (present in all transcripts) exons with the set of cryptic (present only in some transcripts) exons and found statistically significant differences in their length distributions, the nucleoticle distributions around their splice junctions, and the frequencies of occurrence of several short sequence motifs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DNA Microarray is a powerful tool to measure the level of a mixed population of nucleic acids at one time, which has great impact in many aspects of life sciences research. In order to distinguish nucleic acids with very similar composition by hybridization, it is necessary to design microarray probes with high specificities and sensitivities. Highly specific probes correspond to probes having unique DNA sequences; whereas highly sensitive probes correspond to those with melting temperature within a desired range and having no secondary structure. The selection of these probes from a set of functional DNA sequences (exons) constitutes a computationally expensive discrete non-linear search problem. We delegate the search task to a simple yet effective Evolution Strategy algorithm. The computational efficiency is also greatly improved by making use of an available bioinformatics tool.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alternative splicing is widespread in mammalian gene expression, and variant splice patterns are often specific to different stages of development, particular tissues or a disease state. There is a need to systematically collect data on alternatively spliced exons, introns and splice isoforms, and to annotate this data. The Alternative Splicing Database consortium has been addressing this need, and is committed to maintaining and developing a value-added database of alternative splice events, and of experimentally verified regulatory mechanisms that mediate splice variants. In this paper we present two of the products from this project: namely, a database of computationally delineated alternative splice events as seen in alignments of EST/cDNA sequences with genome sequences, and a database of alternatively spliced exons collected from literature. The reported splice events are from nine different organisms and are annotated for various biological features including expression states and cross-species conservation. The data are presented on our ASD web pages (http://www.ebi.ac.uk/asd).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encodes a chloride channel present in many cells. In cardiomyocytes, we report that multiple exon 1 usage and alternative splicing produces four CFTR transcripts, with different 5'-untranslated regions, CFTRTRAD-139, CFTR-1C/-1A, CFTR-1C, and CFTR-1B. CFTR transcripts containing the novel upstream exons (exons -1C, -1B, and -1A) represent more than 90% of cardiac expressed CFTR mRNA. Regulation of cardiac CFTR expression, in response to developmental and pathological stimuli, is exclusively due to the modulation of CFTR-1C and CFTR-1C/-1A expression. Upstream open reading frames have been identified in the 5'-untranslated regions of all CFTR transcripts that, in conjunction with adjacent stem-loop structures, modulate the efficiency of translation initiation at the AUG codon of the main CFTR coding region in CFTRTRAD-139 and CFTR-1C/-1A transcripts. Exon(-1A), only present in CFTR-1C/-1A transcripts, encodes an AUG codon that is in-frame with the main CFTR open reading frame, the efficient translation of which produces a novel CFTR protein isoform with a curtailed amino terminus. As the expression of this CFTR transcript parallels the spatial and temporal distribution of the cAMP-activated whole-cell current density in normal and diseased hearts, we suggest that CFTR-1C/-1A provides the molecular basis for the cardiac cAMP-activated chloride channel. Our findings provide further insight into the complex nature of in vivo CFTR expression, to which multiple mRNA transcripts, protein isoforms, and post-transcriptional regulatory mechanisms are now added.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Do non-coding RNAs that are derived from the introns and exons of protein-coding and non-protein-coding genes represent a fundamental advance in the genetic operating system of higher organisms? Recent evidence from comparative genomics and molecular genetics indicates that this might be the case. If so, there will be profound consequences for our understanding of the genetics of these organisms, and in particular how the trajectories of differentiation and development and the differences among individuals and species are genomically programmed. But how might this hypothesis be tested?

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are 481 segments longer than 200 base pairs (bp) that are absolutely conserved (100% identity with no insertions or deletions) between orthologous regions of the human, rat, and mouse genomes. Nearly all of these segments are also conserved in the chicken and dog genomes, with an average of 95 and 99% identity, respectively. Many are also significantly conserved in fish. These ultraconserved elements of the human genome are most often located either overlapping exons in genes involved in RNA processing or in introns or nearby genes involved in the regulation of transcription and development. Along with more than 5000 sequences of over 100 bp that are absolutely conserved among the three sequenced mammals, these represent a class of genetic elements whose functions and evolutionary origins are yet to be determined, but which are more highly conserved between these species than are proteins and appear to be essential for the ontogeny of mammals and other vertebrates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Five ripening-related ACC synthase cDNA isoforms were cloned from 80% ripe papaya cv. 'Sinta' by reverse transcription-PCR using gene-specific primers. Clone 2 had the longest transcript and contained all common exons and three alternative exons. Clones 3 and 4 contained common exons and one alternative exon each, while clone 1, the most common transcript, contained only the common exons. Clone 5 could be due to cloning artifacts and might not be a unique cDNA fragment. Thus, there are only four isoforms of ACC synthase mRNA. Southern blot analysis indicates that all five clones came from only one gene existing as a single copy in the 'Sinta' papaya genome. Multiple sequence alignment indicates that the four isoforms arise from a single gene, possibly through alternative splicing mechanisms. All the putative alternative exons were present at the 5'-end of the gene comprising the N-terminal region of the protein. 'Sinta' ACC synthase cDNAs were of the capacs 1 type and are most closely related to a 1.4 kb capacs 1-type DNA (AJ277160) from Eksotika papaya. No capacs 2-type cDNAs were cloned from 'Sinta' by RT-PCR. This is the first report of possible alternative splicing mechanism in ripening-related ACC synthase genes in hybrid papaya, possibly to modulate or fine-tune gene expression relevant to fruit ripening.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Marfan syndrome (MFS) is an autosomal dominant condition which may involve the cardiovascular, ocular, skeletal, and other systems. Mutations causing MFS are found in the FBN1 gene, encoding fibrillin-1, an extracellular matrix protein involved in microfibril formation. In the most severe cases, mutations are generally found in exons 24-32, and children with these mutations usually die in the first years of life, of cardiopulmonary failure. We present clinical, molecular and histopathological studies on a patient with severe early onset MFS. He has a mutation in exon 25 of FBN1, a G > A transition at nucleotide position 3131 that converts the codon TGC, coding for cysteine at position 1044, to TAC, coding for tyrosine (C1044Y). This has resulted in abnormalities of the extracellular matrix and a severe clinical phenotype, although he has survived to the age of 14 years. (c) 2005 Wiley-Liss, Inc.